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Abstract

Free-floating carsharing systems face challenges in balancing vehicle supply and demand, of-
ten resulting in inefficient fleet distribution and reduced vehicle utilization. This thesis ex-
plores the potential of predictive models to forecast vehicle demand and user trip destinations
within Berlin’s carsharing. The central hypothesis states that both demand for and destination
of trips can be accurately predicted, enabling targeted incentives that naturally align supply
and demand.

To explore this, usage data was collected over 100 days, observing more than one million
trips and 7,200 vehicles from Berlin’s largest FFCS provider. This data was complemented with
contextual information, including points of interest, weather conditions, and traffic data. To
determine the possibility of predicting demand hotspots and trip destinations, a combination
of spatiotemporal analysis and machine learning models was utilized.

The findings reveal that POls are a significant factor influencing long-term demand patterns,
while weather and traffic show little predictive power. Although the study evaluates multi-
ple models for next-place prediction, it concludes that datasets lacking user-specific informa-
tion and broader contextual information cannot provide the required accuracy. Despite these
limitations, the research underscores the potential for future advancements by incorporating
additional data sources.
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Introduction

Since the commercial introduction of free-floating carsharing (FFCS) by car2go in 2010, this
mobility solution demonstrated environmental benefits that contribute to urban sustainability
(Firnkorn et al., 2011). Unlike traditional station-bound and peer-to-peer carsharing, FFCS
offers users the flexibility to pick up and drop off vehicles anywhere within a defined service
area. This flexibility has fueled the consistent expansion of carsharing services (BCS, 2024a).
In 2024, Berlin had one shared vehicle for every 126 privately owned vehicles (KBA, 2025; BCS,
2024b).

Despite its advantages, FFCS faces a challenge in predicting and balancing vehicle demand.
Demand in different locations fluctuates throughout the day, creating areas with an oversup-
ply of unused vehicles or unmet demand (Jorge et al., 2015; Lippoldt et al., 2019). Unlike bikes
or kick scooters, cars are costly and logistically challenging to relocate, as they cannot be easily
transported to high-demand areas by truck (Stokkink et al., 2021; Caggiani et al., 2013). More-
over, increasing the number of vehicles in the fleet does not necessarily resolve this imbalance
(Weikl et al., 2015).

FFCS operators address this issue through various strategies. These include employing re-
location drivers, commissioning crowdsourced relocation providers, and offering user incen-
tives for long-time underutilized vehicles (Schulte et al., 2015; Job Post 2025; Streetcrowd 2025).
However, these approaches often fall short of providing a sustainable, long-term solution. In
search of a better, more organic solution, this thesis collects and analyzes anonymous real-
world usage data (section 3.2 on page 11). Specifically, I will investigate whether it is possible
to predict areas with higher demand (chapter 4 on page 16) and to determine potential trip
destinations (chapter 5 on page 26), therefore understanding if a trip is likely to improve or
worsen the balance of supply and demand.

Validating this hypothesis could enable more targeted incentives for users, encouraging ser-
vice usage in ways that positively contribute to the system. This would enhance the competi-
tiveness of FFCS and deliver broader benefits for urban mobility.

1.1 Hypothesis

I hypothesize that it is feasible to develop predictive models capable of accurately forecasting
vehicle demand and user trip destinations within Berlin’s carsharing ecosystem. These capa-
bilities could enable targeted incentive mechanisms to encourage users to make trips if they
are likely to go to areas experiencing negative supply-demand imbalances.



Related Work

Multiple studies emphasize the relevance of my research in an implicit user-based relocation
strategy. Schiffer et al. (2021) demonstrated that implementing such strategies can increase
fulfilled rental requests by 21% and operator revenue by 10%. Similarly, Stokkink et al. (2021)
found that user incentives in a station-bound carsharing (SBCS) system are more profitable
and sustainable than staff-based relocations and showed that a hybrid operator-user relocation
system maximized profit and service level. Willing et al. (2017) further noted that user-based

relocations contribute to the self-balancing of carsharing systems.

Over the past decades, carsharing has evolved significantly. Early research focused on station-
bound carsharing, which is often divided into roundtrip and one-way modes of operation
(Illgen et al., 2019). More recent studies have shifted to free-floating carsharing (FFCS), where
vehicles can be left at any legal parking spot. This version of carsharing is now predominant
in many cities, consistently experiencing higher growth than SBCS (Shaheen et al., 2015; BCS,
2024a; Jorge et al., 2013).

For the purposes of my research, this review of related work focuses on FFCS, however, also
lists relevant SBCS findings. In many cases, free-floating demand can be treated analogously
as areas of higher and lower demand instead of specific stations.

Ciari et al. (2014) used MATSim to simulate both SBCS and FFCS in Berlin, finding that the
two systems are complementary rather than competitive. Each system serves distinct trip types
and temporal patterns, highlighting the need for models that accommodate multiple carshar-

ing modes.

Additionally, many current studies focus on either fully electric or combustion fleets. Wu et al.
(2022) note that more research is needed for mixed vehicle fleets to reflect reality more closely.
Even though user booking behavior does not differ significantly between the vehicle types
(Niels et al., 2017), electric vehicles introduce additional complexity as relocation strategies

have to be charge-aware.

2.1 Predicting Demand

Research into carsharing demand has been extensive, identifying various influencing factors.
Statistical techniques like seasonal autoregressive integrated moving averages have been used
to identify patterns (Miiller et al., 2015). To understand flows within a city, Wang et al. (2018)
and Le Vine et al. (2014) have leveraged the gravity and radiation models for urban mobil-
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ity. Other studies applied machine learning approaches such as random forest regression and
support vector regression (Cocca et al., 2020).

The literature identifies four key categories of factors influencing carsharing demand: envi-
ronmental factors, temporal influences, demographics, and neighborhood characteristics.

2.1.1 Environmental Factors

Points of interest (POIs), such as malls, nightclubs, restaurants, or medical facilities, are signif-
icant drivers of carsharing demand. Schmdller et al. (2015) analyzed the spatial distribution of
booking data and found that demand correlates with urban structures, concentrating around
temporal peaks and spatial hotspots. This was further demonstrated by Wagner et al. (2015),
who applied their model to the area surrounding the analyzed operating zone before expand-
ing the latter and proving their predictions” accuracy.

In addition to POIs, Ménoire et al. (2020) and Celsor et al. (2007) found that both the walk-
ability of the area around a carsharing station and regular bus service contribute positively
to usage. For FFCS, however, Willing et al. (2017) observed that a lower density of bus stops
increases carsharing activity. At the same time, train services seem to be used in direct combi-
nation with shared cars and were found to impact usage positively.

Interestingly, Kang et al. (2016) reveals that in Seoul, areas with more registered cars and
fewer subway entrances are associated with higher carsharing demand. This suggests a differ-
ence in carsharing use between western regions and Asia.

Weather conditions further influence demand. Initially, Schmoller et al. (2014) did not ob-
serve a significant impact of temperature or rainfall on bookings on a daily scale. However,
follow-up research by the same authors revealed that sudden weather changes, namely the
start or end of rainfall, affect short-term demand dynamics (Schmoller et al., 2015). A case
study in Basel highlighted that FFCS becomes more attractive compared to public transport
at night, during cold weather, or in rainy conditions (Becker et al., 2017). This study also
noted FFCS is primarily used for discretionary trips when public transport alternatives were
substantially inferior.

2.1.2 Temporal Influences

Willing et al. (2017) expanded on the POI-based approaches by Schméller et al. and Wagner
et al., incorporating a temporal dimension to analyze FFCS demand in Amsterdam. Their
findings revealed that different POI categories have varying impacts on demand at different
times of the day. Restaurants, for example, showed a negative impact in the early morning but
reversed this in the evening. They validated their price optimization and service area decision
support system by applying it to Berlin.

Furthermore, Messa et al. (2021) identified a stronger demand correlation for work-related
POIs during peak hours, while leisure destinations dominated off-peak hours, and recreational

and social destinations were prevalent on weekends.

Studies consistently agree that temporal patterns in FFCS vary significantly between week-
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days and weekends. Weekday demand is primarily driven by commuting trips, whereas week-
ends see a shift toward discretionary travel (Schmoller et al., 2015; Messa et al., 2021; Weikl
etal., 2013).

2.1.3 Demographics

Numerous studies across different have identified age as one of the most reliable predictors of
carsharing use, with young adults between 18 and 37 years old being the primary drivers of
demand (Carrone et al., 2024; Schmoller et al., 2014). Jo et al. (2024) and Chun et al. (2019)
show that the significance of this predictor is further increased in areas with lower rental ac-
tivity. Similarly, areas with a higher household income and higher shares of educated people
tend to experience shorter vehicle idle times (Carrone et al., 2024). A higher concentration of
companies in an area also positively correlates with increased usage (Schmdoller et al., 2015).

These findings are also evident for SBCS. For instance, Ménoire et al. (2020) used a growth
model to show that areas with a higher share of unemployed people impacted usage negatively.
However, they also identified people aged 35-44 as the most relevant user group for SBCS.

Demographic factors influence long-term demand patterns, remaining relatively stable
throughout the day (Schmoller et al., 2015).

2.1.4 Neighborhood Characteristics

Lastly, neighborhood factors, such as population density or parking pressure, impact carshar-
ing demand. Areas with limited parking make car ownership less convenient, thereby increas-
ing the attractiveness of carsharing. These areas often also feature high population densities,
which provide a large customer base with typically lower travel and vehicle ownership rates
(Celsor et al., 2007).

2.1.5 Short-Term Demand

Short-term demand is shaped by dynamic factors, such as weather changes and the proximity
of available vehicles. While demographics and neighborhood characteristics stay consistent for
months or years, and temporal and geographical influences often follow predictable patterns,
short-term trends are more variable. For example, Herrmann et al. (2014) developed a short-
term demand model using real-time FFCS data and revealed evidence of the importance of
relocation strategies for the FFCS business.

Weikl et al. (2013, 2015) differentiated between the different demand patterns by creating
complementary models. One model utilized historical data to forecast long-term demand,
while the other monitored real-time demand to adjust outputs and predict optimal future ve-
hicle distributions. This approach reduced vehicle idle times by 4%.

To better understand short-term demand, some studies, such as Wang et al. (2019), addition-
ally analyzed the use of the corresponding carsharing app. By observing actions like station
selection and refreshes, they inferred demand for vehicles. Combined with temporal patterns,
this allowed them to activate incentives for vehicles more quickly and increase utilization.
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Notably, Wagner et al. (2015) highlighted that “carsharing is a complex business and humans
can anticipate certain effects, such as the buzz created by the opening of a new shopping center
before they are reflected in the data.” While predictive systems can process vast amounts of
data, designing them to match the adaptability of human intuition remains a challenge.

2.2 Predicting Trip Destinations

Understanding where users are likely to take a vehicle is critical, as vehicle supply can directly
influence carsharing demand (Balac et al., 2016). While trip destinations are independent
observations, origins depend on vehicle availability (Willing et al., 2017).

Archetti et al. (2023) evaluated the benefits of requiring users to input departure and arrival
times and locations before booking a trip. This approach allowed the system to preemptively
assign cars to reservations, doubling both reservation satisfaction and vehicle utilization. Their
findings prove the value of accurate trip destination predictions, not only for user-based relo-
cations but also for improving overall system efficiency.

Predicting trip destinations is closely related to studies of human mobility. Song et al. (2010)
found that mobility is highly predictable, with a 93% predictability rate based on historical
information, even though this value varies strongly between users.

2.2.1 Extrapolating Trips

Besse et al. (2016) clustered historical taxi trips geographically and applied Gaussian Mixture
Models to predict destinations, achieving 85% accuracy in cluster identification. Their predic-
tions improved as trips progressed, narrowing from one out of 10 clusters at 50% completion
to one out of 100 at 70%. Similarly, Wang et al. (2018) applied these concepts to SBCS, correctly
identifying areas of stations in 92% of cases for trips past 70% completion. Liu et al. (2021) fur-
ther enhanced prediction accuracy by incorporating user data outside of trips, frequent user
locations, app usage, and system-wide utilization metrics.

Recent advancements in deep learning have yielded significant improvements in destination
prediction. For example, Casabianca et al. (2021) integrated attention layers into bidirectional
LSTM models, enabling predictions of all destinations within 500 meters for Beijing vehicles
after the halfway point of a trip. The attention mechanism dynamically weighted previous
states, improving results and reducing training time.

Research on private car trips has shown that classifying users by entropy ranges — measuring
the variability of their travel patterns — can enhance prediction accuracy, as driver predictabil-
ity varies significantly (Jiang et al., 2021). This finding suggests that incorporating user trip
history could enhance accuracy in destination predictions for carsharing systems.

However, to enable effective incentives for user-based relocation systems, destination predic-
tions must be made before a trip begins.
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2.2.2 Next-Place Prediction

A wide range of techniques has been explored for the next-place prediction problem, including
(hidden) Markov models, support vector machines, recurrent neural networks (RNNs), and
advanced algorithms like Active LeZi. A survey by Schreckenberger et al. (2018) identified
RNNSs as the best-performing method, with most studies incorporating both temporal and
spatial features alongside additional context in 41% of cases.

Early research predominantly relied on Markovian models. Gambs et al. (2012) extended
mobility Markov chains (Markov chains with location states) by incorporating users’” previ-
ously visited locations. They achieved optimal results using two prior locations, predicting
the next POI with 70-95% accuracy; adding additional history yielded negligible results. This
demonstrated the predictability of human mobility when recent history is considered. In an-
other approach, Mathew et al. (2012) employed hidden Markov models to predict future lo-
cations, treating movements as outputs from hidden contextual variables like activities and
goals. However, their accuracy was limited, likely due to the application of planet-scale mod-
els to localized datasets.

Comito (2020) introduced decision trees for analyzing location-based social network data,
differentiating between personal, cumulative, and mass mobility patterns. Their method
achieved over 80% accuracy and revealed that crowd effects observed through social media
could be leveraged to predict mobility. While the use of such data would introduce additional
privacy considerations, similar effects may be detectable in carsharing platform metadata.

Recurrent neural networks have shown significant promise. For instance, Al-Molegi et al.
(2016) proposed an RNN model using time and POI embeddings, outperforming traditional
Markov chain and machine learning models. Their approach also reduced manual decisions
for clustering parameters in spatio-temporal combinations. Supporting this, Chekol et al.
(2022) found that merging multiple contextual features consistently improved performance,
further validating the superiority of deep learning techniques over traditional methods.

Despite the extensive research on general destination and individual next-place prediction, a
significant research gap exists for carsharing systems. Most studies, as reviewed by Schreck-
enberger et al. (2018), rely on large open datasets like Microsoft GeoLife, Nokia MDC, or MIT
Reality Mining. To my knowledge, no open real-world dataset for carsharing trips exists, sug-
gesting additional research opportunities if such data becomes available.

2.2.3 Systemic Factors

Contextual and environmental factors play a highly relevant role in next-place prediction.
Consistent with the factors influencing demand, temporal and POI predictors are essential
and can be grouped into three trip categories: systemic (repeating origin/destination pairs
on weekdays), occasional (linked to entertainment and shopping on weekends), and trips in-
fluenced by public transport integration, particularly in areas with limited public transport
options (Messa et al., 2021). Formentin et al. (2015) utilized similar patterns to decompose

trip series into stationary stochastic, linear trend, and seasonal components.
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Notably, the contextual factors influencing trip destinations differ between cities. While in
Zurich, carsharing was predominantly used for discretionary trips with worse public transport
alternatives (Becker et al., 2017), in Madrid, limited parking availability in certain areas made
parking regulation and supply data more predictive than traditional activity-based features
(Ampudia-Renuncio et al., 2020a).

2.3 Incentive Mechanisms

Various incentive policies have been studied to address vehicle imbalances in carsharing sys-
tems. These include trip merging and splitting (Barth et al., 2004); suggesting destination
changes (Di Febbraro et al., 2012; Wagner et al., 2015; Di Febbraro et al., 2019; Clemente et al.,
2018); offering incentives for unused vehicles or trips ending in specific areas (Lippoldt et al.,
2018, 2019); and implementing zone-based pricing (Willing et al., 2017). Jorge et al. (2015)
proposed adjusting prices depending on a trip’s impact on fleet distribution, and Wang et al.
(2021) and Waserhole et al. (2016) used both monetary incentives and surcharges to address
vehicle imbalances.

Herrmann et al. (2014) surveyed carsharing users and found that 85% would choose a more
distant car if offered at a 10ct/km discount, with an additional 13% willing at higher discounts.
Furthermore, a similar proportion of users were open to specifying their trip destination at the
start, indicating strong user acceptance of incentive-based interventions.

2.3.1 Incentive Performance

Studies in Milan and Cologne examined the effects of surcharges for low-demand areas, re-
duced rates, and bonus minutes. Bonus minutes were found to increase take rates and lead
to quicker rentals, while reduced rates resulted in trips ending in attractive zones more often.
However, the success of these incentives depended on their timing and spatial granularity.
Poorly targeted or delayed incentives were less effective, and overly large incentive zones failed
to align with actual demand hotspots (Lippoldt et al., 2018, 2019).

Jorge et al., 2015; Wang et al., 2021 developed models for dynamic pricing and combinato-
rial incentives and surcharges, demonstrating that such policies can improve fleet balance and
increase operator revenue by up to 22.5%. Similarly, Waserhole et al. (2016) provided ana-
lytical insights into pricing optimization, showing that well-designed incentives significantly
improve system throughput.

2.3.2 Behavioral Impacts

User acceptance of incentives is generally high. However, while Herrmann et al. (2014) re-
ported that 85% of users would choose a more distant car for a small discount, user sensitivity
varies by demographic factors. Younger, male, and frequent users are more responsive to in-
centives (Wang et al., 2021).

Lippoldt et al. (2018, 2019) observed that zone-based bonus minutes often led to unintended
behaviors, such as short trips to the border of incentivized areas, as users sought to maximize
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rewards. In contrast, reduced rates were more likely to encourage trips ending in attractive
zones. Implicit incentives can influence rental destinations. However, they cannot fully replace

operator-based relocations or incentives for explicit destinations.

2.3.3 Considerations

While incentive mechanisms can significantly reduce the reliance on costly operator-based
relocations and enhance system profitability, their design and implementation present chal-
lenges. Complex pricing schemes or poorly communicated incentives confuse users or lead to
unintended behaviors, such as short trips solely to claim bonuses. Moreover, from a societal
perspective, directing vehicles away from low-demand areas may reduce mobility options for
some residents (Willing et al., 2017). Ultimately, successful incentive policies must be care-
fully calibrated and continuously evaluated to achieve a balance between operator goals and
user experience.



Data

The primary dataset for this analysis comprises carsharing activity collected from Berlin’s
largest FFCS provider, MILES. MILES currently offers more than 7,200 shared vehicles across
Berlin to their more than 2.3 million customers (Miles Sustainability Report 2023).

The data were gathered over a duration of 100 days between March and June 2025, during
which more than 7,200 vehicles and over 1 million trips were tracked. The dataset includes
vehicle id and status, trip start and end points, reservations, and discounts, with a typical
spatial accuracy within 50 meters. The delay between actual trip start and end events and
their recording was observed to be less than 2 minutes. Additional data points are detailed in
section 3.3 on page 13. Furthermore, traffic and weather data were obtained periodically, and
POI data was collected at the end of the observation period to analyze their relationship with
trip patterns.

Compared to the most commonly used open geolocation datasets, such as GeoLife or the
Mobile Data Challenge, this dataset contains substantially more trips, although over a shorter
observation period and without linkage to individual users. While much larger publicly avail-
able and continuously updated datasets exist for other modes of transport, such as the New
York City Taxi and Limousine Commission (TLC) dataset with over 3 billion taxi and for-hire
trips and the Citi Bike System dataset with more than 100 million bikesharing records, large-
scale FFCS data are not commonly made publicly available (TLC Trip Record Data 2025; Citi
Bike System Data 2025).

Most recent carsharing studies rely on data obtained through sharing agreements with oper-
ators, often involving predecessors of Free2Move (Kortum et al., 2016). A notable exception is
the InnoZ project, a collaboration between the city of Berlin, Deutsche Bahn, and T-Systems,
which scraped over 50 million trips over five years across multiple cities and providers. How-
ever, this dataset is not publicly available, and InnoZ itself no longer exists.

To my knowledge, the dataset used in this thesis, with its focus on Berlin’s FFCS, is more
comprehensive than any currently available public dataset in this context.
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3.1 Privacy Implications

The use of real-world carsharing data raises privacy considerations, even in the absence of di-
rect personal identifiers. The dataset used in this thesis was obtained from the MILES API,
which, at the time of collection, allowed retrieval of vehicle status and location using random-
ized authentication. This included both resting and active states of vehicles. The service im-
plements security measures that are inadequate to mitigate potentially malicious attacks, even
lacking automated rate limiting or consistent route authorization.

Notably, while the dataset includes data for thousands of vehicles and more than one million
trips, it does not contain user data or associate trips with specific individuals. Fortunately,
MILES does not appear to expose user data publicly. Despite this, the possibility of tracking
real-time trip locations could potentially be exploited. If a malicious actor could, for example,
associate a license plate and time of use with a specific individual, this would enable them
to reconstruct this individual’s entire trip — including origin, destination, and intermediate
points. Moreover, users with regular travel patterns, such as daily commutes or visits to loved
ones could have their routines extracted, potentially leading to their identification.

This is clearly a complicated issue to resolve. Not only is it necessary to make resting vehicle
states available publicly for users to use the service, but Shared mobility is often distributed
through a multitude of partners, such as Jelbi, Bolt, Sixt, and Freenow, each implementing a

different security concept.

3.2 Data Collection

The data collection process primarily relied on automated scraping of carsharing activity from
the MILES API, complemented by periodic retrieval of weather and traffic data. This method
aligns with approaches used in other studies that have utilized scraping to gather carsharing
data, such as Ampudia-Renuncio et al. (2020b) and Kortum et al. (2016). The system architec-
ture is outlined in figure 3.5 on page 13.

3.2.1 Carsharing Data

Vehicle data were continuously monitored over a 100-day period between March 23 and July
5,2025, with a three-day gap caused by a server issue. When a vehicle became unavailable, its
status was checked to determine whether it was reserved, a trip had started, or it had entered
a service mode. Once a vehicle became available again, the current reservation or trip was
considered complete. To minimize the impact on the operator’s systems, the frequency of API
requests was deliberately limited.

Tracking active vehicles posed additional challenges due to the API's design. Higher FFCS
usage throughout the day led to faster trip detection but resulted in fewer updates during trips.
For reservations, the vehicle’s status was monitored frequently until it expired or a trip began.
Vehicles in service states were excluded from tracking to ensure data accuracy and efficient

monitoring.
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3.2.2 Complementary Data

Weather and traffic data collection began on March 30, 2025, and thus covers one week
less than the carsharing data. Weather information was retrieved from World WeatherOnline
through wttr.in, while traffic data were obtained from TomTom. Both datasets are indexed by
EPSG:3857 tiles, allowing for efficient usage with vehicle locations. For traffic data, the aver-
age traffic flow (ranging from 0% for full congestion to 100% for free flow) and a street density
score were calculated per tile and observation. The traffic flow calculation process is shown in
figure 3.4.

POIs were requested from OpenStreetMap on June 22nd, 2025. For this, 14 categories (de-
scribed in table B.1 on page 42) were defined and exported within the service area’s bounds.

3.2.3 Data Cleaning

Data cleaning was focused primarily on the carsharing dataset to ensure the quality and rele-
vance of the analysis. Trips that were either very short (less than 1 km) or long-time rentals
(more than 12 hours) were removed, as these do not represent the typical ad-hoc use I am an-
alyzing and, in some cases, represent scraping issues. This removed 24.7% of trips. To better
capture typical usage patterns, trips occurring on holidays were also filtered out, though school
holidays are included (5.3% of trips). Only public trips were retained, with internal trips ex-
cluded from the dataset. Finally, the dataset was limited to trips in passenger vehicles (which
excluded sizes L and XL) that both started and ended within the Berlin city boundaries. An
additional 0.4% of trips were removed for being incomplete or being otherwise irregular. Af-
ter cleaning, 71% of trips remained, and only associated vehicles, waypoints, and reservations
were kept. The exact counts of records after cleaning are summarized in table 3.1 on page 14.

X
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Figure 3.4: Illustration of traffic flow calculation from a traffic map tile
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Figure 3.5: System architecture of the data scraper

3.3 Data Description

Each vehicle in the dataset includes detailed information, such as license plates and vehicle
models. For every trip, the dataset records start and end points, intermediate points with
timestamps and locations, the vehicle’s current status, and any discounts applied. Reserva-
tions are also tracked, including their start and end times, along with associated locations.
Additionally, changes to discounts for each vehicle are logged, offering insights into dynamic
pricing and incentive mechanisms. Vehicle counts are aggregated every 15 minutes.

Weather data, such as temperature and precipitation, is available at 60-minute intervals and
is spatially organized into tiles of approximately 2.4 km. Traffic flow and street density data are
provided every 20 minutes for smaller tiles of 1.2 km, offering a high-resolution view of urban
mobility conditions. These contextual variables enable the analysis of how external factors
influence carsharing usage.

Due to the aforementioned APIrequest restriction, there is a delay of up to 2 minutes between
the actual start or end of a trip and its observation in the dataset. During active trips, vehicle
status updates were typically recorded every 10-20 minutes. However, during peak times, the
update interval for intermediate points could extend to around 60 minutes.

The dataset reflects high rental activity, with an average of 150 trips per vehicle and a median
of 170 trips. The data model is illustrated in figure 3.6 on the following page, and detailed
value counts are provided in table 3.1 on the next page.
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Table 3.1: Overview of cleaned data

Data Source Attributes Volume/Frequency
Miles Trips: Full trips with start and end points; optionally 1,180,173 trips
intermediate points; data on discounts
Waypoints: Point along a trip route with time; 5,204,771 waypoints
location; and vehicle status
Vehicles: Every vehicle in Berlin, including metadata 6,486 cars, 877 vans

Reservations: Start and end times; location; discount

at reservation start

1,393,230 reservations

Discount Change: Placed, changed, or removed

incentive; time

1,892,705 changes

Density: Vehicle counts by size group

15-minute per

postcode
TomTom Flow: Average area-wide traffic flow and street 20-minute
density per 1.2km tile
WorldWeather- Weather: Current conditions including temperature; ~ Hourly
Online rain; visibility; and other factors per 2.4km tile
OpenStreetMap POlIs: Categorized in 14 types; name and location 42,021 POIs
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Figure 3.6: Entity-relationship diagram of scraped data
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Figure 3.7: Timeline of randomly sampled vehicles on June 20th, 2025

90
60
30
g
Figure 3.8: Average vehicle count per Berlin postcode and BER airport
3% 2% 99
Small } Vehicle Size
[ Small
Medium : -—{ as% B Mediun
3 Premium
Premium| = | ; )Izir‘ge

e
-

XL| F—
0 50 160 150 200 250 300

Figure 3.10: Trips recorded per size
Figure 3.9: Trips recorded per vehicle by size class class

Figures 3.9 and 3.10 include large and XL size classes for reference



Predicting Demand

4.1 Methods

This experiment investigates whether the available data supports short- and long-term de-
mand predictions for FFCS vehicles. Trip starts are interpreted as observed demand, and the
influence of various contextual factors on this demand is analyzed.

4.1.1 Aggregation and Detrending

Previous studies on urban mobility consistently report distinct mobility patterns on workdays
and weekends (Messa et al., 2021; Weikl et al., 2013). Reflecting this and the temporal structure
illustrated in figure 4.2 on page 18, all trips were partitioned into 5 time bins for either day
type: early morning (00:00—05:59), morning (06:00—09:59), midday (10:00—15:59), evening
(16:00—19:59), and late evening (20:00—23:59). Traffic and weather data were aggregated into
hourly intervals to align with this temporal division.

For spatial aggregation, I applied Uber’s H3 hexagon grid, assigning all values to a standard
spatial index. At resolution 8, each cell represents an area of approximately 0.65km?, offering
neighborhood scale and matching previous research (Casabianca et al., 2021). H3 is emerging
as an industry standard for geospatial analytics and has successfully been applied in similar
studies, such as Jo et al. (2024).

Both trip and POI counts are heavily influenced by the underlying urban density. To isolate
deviations attributable to explanatory features, a one-predictor linear regression was applied
to trips per cell and time bin, controlling for total daily trips by day type, before mean-centering
for further analysis.

Similarly, POI counts were processed by regressing each category’s count against the total POI
count. The residuals represent irregular over- or underrepresentation of specific categories.

4.1.2 Spatial Clusters and Colocation

Local hot and cold spots for both trip starts and POI density were identified using the Getis-
Ord G statistic (Getis et al., 1992), with inverse-distance weights applied to a three-ring neigh-
borhood. The G} statistic evaluates how much a cell’s and its neighborhood’s feature values
deviate from the expected value to cluster high and low values. Focussing on clusters instead

16
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of isolated extreme cells mitigates the multiple comparisons problem and highlights areas of
actual relevance.

POI categories are often strongly collinear, even if general urban activity has been accounted
for. Redundant categories were identified using an /;-penalised OLS regression (LASSO). Ad-
ditionally, Local Moran’s I was calculated to identify common colocations of unusual densities
across POI categories.

4.1.3 Global and Local Effects

To evaluate city-wide associations between demand and potential predictors, Spearman corre-
lations were calculated for residualized variables. Ordinary Least Squares (OLS) models were
fitted to analyze the relationships between trips in different time bins and predictors such as
traffic, weather, and POI categories. To account for potential non-linearities and better cap-
ture primary effects, the OLS results were compared against those from a generalized additive
model (GAM).

While global coefficients are easy to interpret, they can hide spatial heterogeneity. To ad-
dress this, geographically weighted regression (GWR) was applied to both the POI and traf-
fic/weather feature sets. Bandwidths were selected using the corrected Akaike Information
Criterion (AICc). The standard deviation of the GWR coefficients was used to determine
whether an observed effect was global (city-wide) or local (neighborhood-specific). Addi-
tionally, the GWR’s R? served as a meaningful measure of a predictor’s explanatory relevance
for the collected data.

4.2 Results

4.2.1 Clusters of Trip Starts

After accounting for general urban activity, the Getis-Ord G} statistic reveals distinct spa-
tiotemporal patterns in trip start counts, representing local demand for vehicles. In figure 4.3
on page 19, cells with G}-scores above the 99% confidence level are highlighted as hot or cold
spots, with those above the 95% confidence level are marked as warm or cool.

During early mornings on weekends, demand falls almost entirely below the residualized
weekend baseline, aligning with intuitive expectations. On weekdays, this time bin shows
hotspots in the outer region of the service area, while the central district exhibits below-
expected demand.

As the day progresses, demand gradually migrates inward. By midday, the highest intensities
are concentrated in and around the city center, possibly reflecting work- or lunch-related travel.
This westward shift continues throughout the evening. Late evenings on weekdays display a
more even surface overall, interrupted by a few hotspots in the city center and farther west.

Weekend dynamics differ substantially. Central hotspots reappear during the morning and
evening bins, expanding into northern and western cells, yet the same areas flip to cold at
midday. Overall, trip starts on weekends are more evenly distributed than on weekdays.
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Figure 4.1: POI analysis pipeline
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Figure 4.2: Temporal distribution of trip starts by day of the week
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4.2.2 Clusters of Points of Interest

Applying the same G} procedure to residualised POI counts highlights the diverse land use
across Berlin (figure 4.4 on the following page). Accommodation and restaurant venues form
the most prominent hot cluster in the central district. This area also concentrates transit POlIs,
stretching from the central station through Alexanderplatz and north to Gesundbrunnen.

Shops, in contrast, expand much farther beyond the central district, appearing as hotspots
across nearly half the service area. Their only notable cold spot is in the southwest, where bars,
entertainment, and health institutions form hot clusters. While not immediately intuitive, this
reflects how G} identifies unusual values within neighborhoods, not city-wide absolutes.

Education, religion, and public service facilities are evenly distributed and show up as largely
neutral. Culture and finance, in contrast, show the opposite extreme. In contrast, culture and
finance-related POIs are highly concentrated. Cultural POlIs cluster tightly around the city
center and Gesundbrunnen, while finance-related POIs form a corridor between the center,
Neukolln, and adjacent districts. These elevated local means push most other areas into the
cold category.

Finally, the nature category appears nearly homogeneous. Nonetheless, the algorithm marks
a cold spot close to the Grunewald forest and a hot patch in Lichtenberg, highlighting a dis-
crepancy in how the POI dataset represents reality.

Early Morning Morning Midday Evening Late Evening
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Figure 4.3: G} hotspots for trip starts in each time bin

4.2.3 Point of Interest Categories

A city-wide LASSO regression reveals significant collinearity between some POI categories.
The strongest correlation is observed between health and shopping, which is notable, given
that the hotspot analysis did not identify overlapping clusters for these categories. This does
not explain, however, whether this reflects pharmacies and medical practices clustering near
retail corridors or simply a shared prevalence of both categories in lower-density neighbor-
hoods.

Classic commercial correlations also emerge, such as strong associations between food and
drink, as well as shopping and accommodation with food, suggesting mixed shopping-
nightlife districts where hotels are likewise overrepresented. Recreation facilities frequently
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appear near schools and universities, while finance POIs draw higher concentrations of nearby
transit stops. Conversely, transit clusters are less likely to overlap with bar districts, and health
POIs are uncommon in restaurant-dense cells.

Local Moran’s I paints a similar picture at the neighborhood scale. High-high clusters of
restaurants and bars dominate the center and Prenzlauer Berg, although areas exist where only
one of the two categories is unusually common. The recreation-education colocation suggested
by the LASSO results is also evident on smaller scales.

Health Entertainment Recreation

Shannon Entropy

-

(tew z"#._
L°, . 2
¥ e
Figure 4.4: G} hotspots for POIs by category
Food x Drinks Drinks x Education Recreation x Education

Figure 4.5: Locan Moran’s I for select POI category combinations

424 Long-Term Demand
Basic Pearson correlations show that the strength and sign of POI-demand relationships vary
throughout the day.

In the early-morning weekday bin, education exhibits the strongest positive correlation,
whereas accommodation, culture, and food show adverse effects. This could represent people
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leaving residential districts with more schools and fewer hotels or museums. This pattern per-
sists into the morning rush hour, but by midday, accommodation and culture turn positive.
At this point, transit stops and restaurants also contribute positively, while education shifts to
a negative influence on demand.

In the evening, when the G} analysis shows that trip starts are more spatially balanced, POI
influence fades. After 20:00, however, bars emerge as the dominant factor every weekday,
showing slightly weaker effects on Thursdays but remaining consistent on Fridays.

On weekends, in the early mornings, bars contribute positively, with similar patterns to week-
days by morning. In the late evening, weekend trips increasingly start in areas with leisure-
oriented POls, such as restaurants, bars, and entertainment. While these relationships are not
as strong as some others, they counteract the negative impacts of categories like health, recre-
ation, and education during the same period.

Applying GWR reveals the spatial texture of these effects. Most categories exhibit uniform
behavior in the core of the service area and vary only in the outskirts. However, a few notable

exceptions emerge.

The late-evening bar effect, while positive city-wide, is much stronger in eastern Berlin. On
weekdays, accommodation has a nearly global positive impact at midday but reverses to a
negative influence in the early morning. During this time, areas near the airport signal a slight
positive effect, contrary to their negative impact at noon. Interestingly, this area often opposes
general city-wide effects, such as food and entertainment.

While some categories, like restaurants, are much more homogenous, transit locations stand
out for the commuting patterns they reveal. On weekday mornings, transit suppresses demand
in the center and east but boosts it in the west, suggesting that commuters in these areas use
FFCS vehicles, while those in the inner city walk or cycle to public transport. By midday, this
pattern inverts, showing a strong positive influence throughout the city, except in areas with
positive early-morning correlations. By late evening, the positive influence shifts further west,
beginning to transition north and back to the early-morning pattern. On weekends, transit
effects are weaker and less structured, though the east retains its midday positive influence.

The standard deviation of local GWR coefficients confirms the localized nature of tran-
sit effects, whereas categories like food, drink, health, and shopping behave more globally.
Category-wise R? values confirm the Pearson correlation findings, reiterating the varying rel-
evance of different POI categories throughout the day.

Shopping locations present a high relevance but highly local effects. Conversely, education
has a strong and relatively global impact during early weekday mornings. High individual R?
scores, exceeding 40%, underscore the collinearity observed earlier. In a multivariate GWR, all
POI categories combined explain more than 50% of weekday demand deviance (except during
the evening bin) and 23-34% on weekends. This illustrates both the power and the limitations
of this static context for modeling demand.
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Figure 4.6: GWR local effects for select POI and time bin combinations
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Figure 4.8: Trip and POI category correlation results



4.3. Discussion 23

4.2.5 Short-Term Demand

For traffic and weather data, simple correlations did not reveal meaningful signals, suggesting
that potential effects may be obscured by spatial heterogeneity or non-linearity. The city-wide
OLS (table C.1 on page 43), however, confirms their very low practical relevance, explaining
only 0.7% of the deviation in trip start counts, with weather factors alone contributing to less
than half of this. The GAM results further eliminate non-linearity as a significant factor, as
they show minimal improvement over the OLS. Similarly, the GWR analysis eliminates spatial
heterogeneity, as effects are globally negligible.

The slight yet statistically significant effects, amplified by the large sample size, largely con-
form to intuition. Traffic flow follows an inverted U-curve, where less congestion correlates
with more demand, but no congestion has a negative effect, possibly reflecting reduced ac-
tivity in unusually less busy areas. Temperature is mildly U-shaped, with middling values
suppressing demand, while heat increases it slightly more than low temperatures, perhaps
due to mode shifts away from cycling or public transport.

Light rain shows a marginally positive correlation with demand, whereas heavy rain reverses
this effect. However, the sample size for heavy rainfall is too small to draw definitive conclu-
sions. For changes in precipitation, the two models diverge. The GAM suggests a drop in
demand when rain begins and a rebound when it stops, while the OLS finds a weak overall
decline that is only significant at large deltas.
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Figure 4.9: Comparison of OLS and GAM models for traffic, temperature, and precipitation

4.3 Discussion

In the first experiment, I analyzed the relationships between the trip start counts, different
POI categories, and traffic and weather influences, identifying recurring patterns. While I did
not attempt to predict future demand, the results demonstrated that POIs play a significant
role in where demand exists at different times. These findings align with much of the existing
literature, including (Schmoller et al., 2015) and (Wagner et al., 2015). However, contrary
to Schmoller et al., I was unable to identify a practically relevant influence of precipitation
changes on FFCS demand.

Changes in precipitation, traffic, and additional weather variables proved to be statistically
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significant yet practically irrelevant. With a combined explanatory power of less than 1%,
these factors offer little value in predicting dynamic demand. Additional, potentially relevant
predictors such as events, transit outages, school holidays, or real-time vehicle reservation
rates exist but were not included in the thesis dataset. Furthermore, live user application data,
as utilized by (Wang et al., 2019) and (Liu et al., 2021), has been shown to be highly valuable
in similar studies but was unavailable for this analysis.

Based on the dataset collected for this thesis, the first part of my hypothesis is rejected. It
is not possible to forecast vehicle demand more meaningfully than static patterns using the
available data. Short-term demand predictions would require additional predictors, although
the literature suggests that meaningful forecasting is feasible with the right data.

There are also methodological limitations to my approach. POl reflect only the count of loca-
tions, not their relevance. For example, a local pharmacy is treated equivalently to a clinic, and
Tempelhof Field is considered the same as Viktoria-Luise-Platz. This clearly does not reflect
reality. While I identified significant collinearities between POI categories, I did not address
them using techniques such as principal component analysis or SHAP profiles for the LASSO
regression. My results show that POISs significantly impact observed demand, but could have
been more consequential for land-use types like those determined by (Klemmer et al., 2016).

Data limitations also extend to weather factors. The dataset contained only a small number
of days with heavy rain and none with extreme heat. Furthermore, while I detrended trip
counts, it might have been valuable to use alternative detrending bases, such as population or
employment census data, which were not part of the thesis dataset.

Finally, trip start points are not entirely independent, as they depend on the destination of the
previous trip (Willing et al., 2017). My approach treated demand as the number of trip starts
without accounting for unfulfilled demand caused by vehicle unavailability. (Schmdller et al.,
2015) addressed this by clustering days and regions into different demand categories, which
then served as a baseline for required supply. While the observed fleet’s size might render this
issue negligible, it could still have influenced my results.



Predicting Trip Destinations

5.1 Methods

The second experiment attempts to predict trip destinations using common models to deter-
mine if the dataset allows for accurate forecasting. Three models were compared against a
baseline and theoretical maximum: a statistical multinomial logit, a gradient-boosted decision
tree, and a neural network.

5.1.1 Data Exploration and Preparation

The service area contains 535 resolution-8 cells, but initial tests showed that some models be-
came computationally expensive or unstable due to sparse data in the outer cells. To address
this, the dataset was downsampled to 109 classes at resolution 7, where each cell has an aver-
age edge length of approximately 1320 meters. Additionally, trips to and from Berlin’s airport
were excluded from the analysis after determining that these trips differed significantly from
other system-wide trips.

To identify macro-patterns before model fitting, origin-destination flows, median trip dis-
tances, and prevailing travel directions were mapped for each time bin. Residualized desti-
nation counts were analyzed using the Getis-Ord G} statistic (analogous to section 4.1.2 on
page 16) to compare hotspots in trip starts and ends.

The dataset was split into a twelve-week training window and a two-week hold-out window,
representing approximately 13% of the records. For the baseline and logit model, context com-
binations that did not occur in the training set were removed to mitigate inaccuracies caused by
an insufficient observation duration. Laplace smoothing was applied to probabilities to reduce

noise in rare contexts and improve model robustness.

5.1.2 Baselines

To assess the determinability of the classification problem and contextualize the prediction
results, I established a range for potential improvement. The lower bound was defined by a
majority-vote classifier, which always predicts the most frequent destination for a given con-
text.

The upper bound IT,, was estimated using the Bayes error rate, representing the highest
theoretically achievable prediction accuracy for a model trained on the available context set in

26



5.1. Methods 27

the dataset (equation (D) on page 45).

For additional insight, I also calculated the theoretical maximum predictability for each con-
text when considering human mobility (IT*). This approach, introduced by Song et al. (2010),
was based on studying phone users’ mobility patterns. While this upper bound is only valid for
trips associated with individual users and when user history is known, it offers a perspective
on the potential impact of user-specific correlations on prediction accuracy.

Each improvement range was defined using a subset of the available features: starting cell,
hour of the week, applied discounts, reservations, traffic, temperature, precipitation, POI-
based land use, and dominant POI category. Traffic and weather variables were discretized
into three categories, and six land-use clusters were derived from POI category residuals using
PCA.

5.1.3 Models

While trajectory-based approaches have proven to be highly accurate, they are not applicable in
this experiment, as the trip’s destination must be predicted before the trip begins. Therefore,
the problem was framed as a classification task, with three common approaches applied to
calculate accuracies for the top 1 through top 3 predictions.

In theory, the majority-vote baseline would converge into I'l,,,,, if applied to an infinitely large
and perfectly representative dataset. However, real-world datasets, including the one used in
this study, are finite and inherently skewed. Observations are more frequent in the core of
the service area and less common during extreme weather, periods of congestion, or relevant

events.

To close this gap, I fitted three models to infer relationships between context variables. Cate-
gorical features were encoded as integers, and numerical features were standardized based on
the training set. Model performance was evaluated using top-1 accuracy and the ROC AUC
for each class.

The first model applied was a multinomial logit for its transparency in revealing cross-context
relationships. This model provides straightforward insights into the linear dependencies be-
tween predictors and outcomes, making it useful for comparison.

To capture more complex relationships between context variables, I used a gradient-boosted
decision tree (CatBoost) optimized through grid search-tuned hyperparameters. This algo-
rithm improved the modeling of potentially complex context relationships between predictors

and outcomes.

Finally, I implemented a recurrent neural network (RNN) to model the spatiotemporal data.
Specifically, I used a gated recurrent unit (GRU) with a simple attention layer to focus on the
most relevant features during prediction. RNNs have been identified as the best-performing
method for demand prediction by Schreckenberger et al. (2018) and have shown significant
potential for next-place predictions in the work of Al-Molegi et al. (2016).
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5.2 Results

The initial exploration revealed that destination points are more concentrated than start points,
as determined by local residuals. However, the overall demand patterns for pick-ups and drop-
offs are similar across most time bins. Trip distances are homogeneous throughout the city,
with a slight decrease observed in Friedrichshain, and show no meaningful variation over
time. Trips started on the outskirts of the service area cover longer distances. The average
trip direction exhibits a clear west-east orientation with a slight southward trend. This pattern
persists for shorter trips, albeit less prominently, with a localized version of the same trend
emerging in Spandau.
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Figure 5.3: Gi* hotspots for trip destinations in each time bin
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5.2.1 Baseline

Using only the starting location and hour of the week as predictors establishes a theoretical
maximum accuracy of 11.7% and a top-1 baseline of 7.9%. While this baseline is already far

better than random guessing, I1,,,, does not leave much room for improvement.

Unfortunately, and consistent with the findings of the first experiment, adding additional con-
text only increases the theoretical maximum to 15.2% top-1 accuracy. This demonstrates that,
even with the proposed predictors, the classification problem is not deterministic. Moreover,
the majority baseline accuracy decreases when additional context is introduced. This is due to
smaller observation sizes per context, which flatten the smoothed counts toward uniformity.

Removing either the startlocation or time from the context confirms what the entropy analysis
implies. These two predictors are by far the most relevant. In contrast, neither of the POI-based
predictors improves the majority baseline or the theoretical maximum. This suggests that any
contextual information they provide is already encoded in the starting location cell.

5.2.2 Logit

Fitting the multinomial logit model using the starting cell and time, as well as traffic and
weather context, improves upon the baseline by roughly 35%, or three percentage points. This
improvement highlights the model’s ability to infer relationships in the sparser dataset as more
variables are added. However, it only marginally improves upon the most effective baseline
variant, suggesting the model is unable to benefit from the additional context effectively.

The results confirm that, without the starting cell, the remaining predictors provide little to
no value. Even with generous regularization, the model drives most non-spatial coefficients
to zero. Weather and traffic data are even less informative for predicting trip destinations than
they were for predicting trip starts in the first experiment.

5.2.3 Gradient-Boosting

An initial, uncalibrated run of the CatBoost gradient-boosting algorithm yielded lower results
than the logit model. Even after carefully tuning hyperparameters, the resulting accuracy gains
were minimal. Encoding historical k-fold origin/destination (O/D) probabilities reasonably
improved the model’s performance, but ROC curve analysis revealed that this process inad-
vertently leaked future knowledge into the test set.

Without access to data that is unattainable in real-world scenarios, the gradient-boosting al-
gorithm does not outperform the logit regression. This suggests that complex interactions
between the proposed predictors do not drive the trips in the dataset. Analyzing the model’s
feature importance reveals that starting cell and time account for more than 90% of the predic-

tion performance.
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5.2.4 Recurrent Neural Network

Similarly, the GRU model failed to outperform the previous approaches when trained on 15-
minute snapshots over 4-hour windows. Encoding additional spatial information, such as the
start point’s distance from the center of Berlin’s carsharing activity or its parent cell at a lower
resolution, did not yield significant improvements. Adding an attention layer to capture better
the progression of system state over 24-hour windows slightly improved accuracy, but the GRU
still barely surpassed the previous approaches.

After careful configuration, the results show no evidence of significant overfitting. However,
the GRU does not extract more value from traffic and weather data than the minimal insights
provided by the logit or CatBoost models. This suggests either that the dataset lacks suffi-
cient information to leverage advanced algorithms or that the proposed predictors offer no
additional value.

These findings align with the initial exploration. However, possible destinations are almost
purely predicted based on starting location and time, which is why all models barely improve
upon the baseline. However, unlike the majority-vote baseline, models incorporating cross-
influences perform better in previously unseen contexts. This is evident in the consistent per-
formance of both CatBoost and GRU when applied to all test contexts (chapter D on page 45).

6.7
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5.3 Discussion

I trained three classification models of increasing complexity to address the next-place pre-
diction problem: a multinomial logit, gradient-boosted decision trees, and a compact neural
network. While these models improved measurably upon the baseline majority-vote, their per-
formance was nearly indistinguishable from one another. None of the models achieved a level
of accuracy that would justify deployment.

Even after excluding trips to and from the airport and removing holiday data (section 3.2.3
on page 12), the theoretical ceiling set by context entropy remains at 15% — a score much too

low to base discounts for implicit user relocations on effectively.

These results are consistent with the findings from chapter 4 on page 16. Dynamic influ-
ences, such as traffic, temperature, and precipitation, provide minimal predictive value. Con-
sequently, the models rely almost exclusively on starting location and time, both of which are
already well explained by the baseline prediction.

Unlike the first experiment, the spatial dimension of the destination prediction only aimed
to understand if different locations are popular rather than why they are popular. Therefore,
adding POl information did not improve predictions, as this information was already encoded
in the starting cell context. Understanding the reasons for cell popularity would be relevant
when applying such models to a different city (Willing et al., 2017). However, the proposed
land-use and dominant category indicators were insufficient to replace the starting cell context.

Several opportunities for improvement emerge from these findings. Analogous to chapter 4
on page 16, incorporating additional context data, such as major events, transit disruptions,
or unplanned construction, could benefit prediction accuracy. The dataset may also not be
representative of factors such as extreme weather and too noisy in such instances. The deep
learning approach, in particular, might further benefit from a more extensive observation pe-
riod to extract meaningful patterns. Additionally, the dataset contains features that were not
included in this analysis, such as the difference between premium and standard vehicles, which
could be investigated further.

One context that could dramatically improve predictions is user identification and history.
My calculations, following the approach by Song et al. (2010), suggest that accuracy could
increase to as much as 45% if anonymous user data were added to the analyzed context. Simi-
larly, Gambs et al. (2012) and Al-Molegi et al. (2016) have demonstrated the high predictability
of human mobility patterns. Liu et al. (2021) further showed that knowledge of frequent user
locations can improve trip extrapolation accuracy, which could apply to next-place predictions

as well.

Based on the results of this experiment, however, the second part of the hypothesis is rejected.
With the dataset collected for this thesis and the proposed predictors, it is not possible to
accurately predict a trip’s destination before it begins. While user history could significantly
improve predictions, it is unlikely to achieve an accuracy level suitable for practical deployment
unless more relevant predictors are provided.



Conclusion

The two experiments conducted in this thesis approached the hypothesis from different sides.
The first explained short- and long-term demand patterns using exploratory methods, while
the second applied three different classification strategies to predict likely carsharing trip des-
tinations. Both experiments yielded the same result: trip metadata, POIs, traffic, and weather
data are insufficient to model human behavior within a carsharing system.

The thesis demonstrated that traffic, temperature, and precipitation have minimal influence
on both demand and usage for FFCS. While the results limit the feasibility of short-term de-
mand estimation based on the analyzed dataset, they also reveal significant patterns in long-
term demand. These patterns were shown to be largely explained by differences in nearby
points of interest (POls). This finding, despite limited by the unresolved collinearity of cate-
gories, can inform strategic decisions such as service area design.

When predicting individual trip destinations, the limitations become more pronounced.
None of the three tested models (multinomial logit, CatBoost, and GRU with attention)
achieved accuracy levels sufficient for operational deployment. Without user data or richer
dynamic context, the theoretical upper bound for prediction accuracy tops out at just 15%, far
below what would be needed for implicit user-based relocation incentives.

The hypothesis that predictive models could accurately forecast demand and trip destina-
tions within Berlin’s FFCS was thoroughly tested but ultimately not supported. Instead, this
thesis highlights the need for richer datasets to enable more accurate real-time predictions and
provides insights into long-term demand patterns.

6.1 Future Work

The challenges explored in this thesis remain relevant for optimizing carsharing systems. The
literature consistently emphasizes that user-based relocations are more effective than operator-
based strategies and that users can be incentivized to choose alternative vehicles or parking
locations (Herrmann et al., 2014; Lippoldt et al., 2019). However, realizing the full potential
of these strategies requires further research.

Future studies should incorporate additional data, particularly user-specific information,
such as personal location history and app interaction rates. System metadata, including
changes in reservation behavior and external factors, such as transit disruptions, major events,
or city-wide activities, could also enhance the predictive power of demand and destination
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models.

Furthermore, exploring these methods in different urban contexts could provide additional
insights. The literature indicates that carsharing systems are used differently across cities,
and this research suggests that Berlin’s patterns may be more complex than those reported
elsewhere. Understanding these differences could improve the generalizability of predictive
models.

By leveraging richer datasets, future research may achieve prediction accuracies suitable for
operational deployment. Such advancements would not only improve the efficiency of car-
sharing systems but also contribute to more sustainable urban mobility.
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Point of Interest Categories

Table B.1: Point of interest categories

Category Name Included Tags Number of POIs
Food Restaurant 6078
Drink Bar; Pub 3901
Health Doctors; Dentist; Pharmacy; Clinic; Hospital 2478
Entertainment Cinema; Theatre; Nightclub; Amusement Arcade 388
Recreation Fitness Centre; Sports Centre; Swimming Pool; Pitch; 4314
Climbing; Track
Transit Railway Station; Bus Station; Ferry Terminal, 222
Aerodrome
Shopping Shop (all types) 16797
Education School; University; Kindergarten; College 2488
Finance Bank 1205
Accommodation Hotel; Hostel; Guest House; Motel 712
Culture Museum; Gallery; Library; Arts Centre 700
Religion Place of Worship 497
Public Services Post Office; Police; Fire Station; Townhall 237
Nature Park; Wood 2004
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Demand OLS Results

Table C.1: OLS regression results for trip residuals with traffic and weather variables

Dep. Variable: Trip Residuals ~ R-squared: 0.007
Model: OLS  Adj. R-squared: 0.007
Method: Least Squares  F-statistic: 1057
No. Observations: 1,002,635 Prob (F-statistic): 0.000
Df Residuals: 1,002,627  Log-Likelihood: -1.691e+06
Df Model: 7 AIC: 3.384e+06
Covariance Type: Nonrobust  BIC: 3.384e+406
Predictor Coef. Std. Err. t P>|t| [0.025, 0.975]
Constant (Intercept) -1.9626 0.058 -33.863 <0.01 [-2.076, -1.849]
Traffic Flow 6.3016 0.148 42.681 <0.01 [6.012, 6.591]
Traffic Flow? -4.2506 0.092 -46.096 <0.01 [-4.431,-4.070]
Temperature -0.0399 0.001 -47.632 <0.01 [-0.042,-0.038]
Temperature? 0.0013 2.57e-05 49.227 <0.01 [0.001, 0.001]
Precipitation 0.1927 0.010 20.032 <0.01 [0.174,0.212]
Precipitation? -0.0142 0.001 -16.806 <0.01 [-0.016, -0.013]
Precipitation Delta -0.0167 0.007 -2.410 0.016 [-0.030, -0.003]
Precipitation Delta? -0.0142 0.001 -16.806 <0.01 [-0.016, -0.013]

Omnibus: 486702.589 Skew: 1.562

Durbin-Watson: 1.444 Prob(JB): 0.000

Prob(Omnibus): 0.000 Kurtosis: 28.421

Jarque-Bera (JB): 27405070.149 Cond. No.: 2.30e+15
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Table C.2: OLS regression results for trip residuals with POI categories during weekday middays
Dep. Variable: Trip Starts Midday Weekday R-squared: 0.452
Model: OLS Adj. R-squared: 0.437
Method: Least Squares F-statistic: 30.79
No. Observations: 538 Prob (F-statistic): 2.28e-59
Df Residuals: 523 Log-Likelihood: -3122.9
Df Model: 14 AIC: 6276.0
Covariance Type: Nonrobust BIC: 6340.0
Predictor Coef. Std. Err. t P>t [0.025, 0.975]
Constant (Intercept) 17.9680 5.294 3.394 0.001 [7.568, 28.368]
Points of Interest: Food 0.9559 0.714 1.338 0.181 [-0.448, 2.360]
Points of Interest: Drink -7.7722 0.871 -8.922 0.000 [-9.484, -6.061]
Points of Interest: Health -0.2275 0.759 -0.300 0.765 [-1.719, 1.264]
Points of Interest: Entertainment -10.4473 3.353 -3.116 0.002 [-17.035, -3.860]
Points of Interest: Recreation -1.0442 0.515 -2.029 0.043 [-2.055, -0.033]
Points of Interest: Transit 21.2825 5.374 3.960  0.000 [10.725, 31.840]
Points of Interest: Shopping 0.1270 0.200 0.636  0.525 [-0.265, 0.519]
Points of Interest: Education -3.3162 1.237 -2.680 0.008 [-5.747,-0.885]
Points of Interest: Finance 8.6880 1.906 4.558 0.000 [4.944,12.432]
Points of Interest: Accommodation 13.1082 1.679 7.806 0.000 [9.809, 16.407]
Points of Interest: Culture 13.9205 1.894 7.349 0.000 [10.199, 17.642]
Points of Interest: Religion 1.3671 3.562 0.384 0.701 [-5.630, 8.365]
Points of Interest: Public Services 1.6461 4.560 0.361 0.718 [-7.313, 10.605]
Points of Interest: Nature -2.6074 0.764 -3.414 0.001 [-4.108, -1.107]
Omnibus: 229.651 Skew: 1.595
Durbin-Watson: 1.906 Prob(JB): 0.000
Prob(Omnibus) 0.000 Kurtosis: 12.562
Jarque-Bera (JB): 2277.840 Cond. No.: 107.0




Destination Baseline & Results

For the majority baseline and the logit model, only contexts present in the training set were

kept for the test set. Maximum set sizes: 836,023 training rows, 125,296 test rows. Resolution

7 corresponds to an average hexagon edge length of approximately 1320 maters, resolution 8

to approximately 500 meters.

The theoretical upper bound Il,,,, is the is the maximum accuracy a model can achieve given

the context variables. It is implemented as the Monte-Carlo estimate of the Bayes-optimal

prediction accuracy, or I1,,,, = max;cp P(D = d|C).

IT* represents the theoretical maximum accuracy based on human mobility, if trips were user-

bound and user history was available, using the context variables, following Song et al. (2010).

The top-k majority distribution shows the percentage of test rows that can be predicted cor-

rectly by selecting the top-k most frequent destinations in the training set.

Table D.1: Upper bound, I1% and top-k majority distribution at H3 resolution 7

Context Variables Il ax IT Top-1 Top-2 Top-3 Test Kept
CH 11.7% 37.6% 7.9% 14.25% 19.67% 99.9%
CHFTR 15.1% 44.5 % 6.63% 11.93% 16.51% 70.6%
CHLP 11.7% 37.6% 7.82% 13.94% 19.33% 99.9%
CHFTRLP 15.1% 44.5% 6.63% 11.93% 16.51% 70.6%
CHDBFTRLP 15.2% 45.4% 5.94% 10.60% 14.57% 69.1%
HEFTRLP 6.4% 30.6% 5.16% 9.65% 13.79% 90.5%
CFTR: 13.1% 36.9% 8.13% 14.39% 20.12% 99.6%
Table D.2: Top-k logit model predictions at H3 resolution 7
Context Variables Top-1 Top-2 Top-3 Test Kept
CH 8.73% 15.55% 21.56% 99.9%
CHFTR 8.87% 15.72% 21.65% 70.6%
CHLP 8.71% 15.52% 21.43% 99.9%
CHFTRLP 8.88% 15.73% 21.65% 70.6%
CHDBFTRLP 8.85% 15.70% 21.75% 69.1%
HFTRLP 5.64% 10.55% 15.08% 90.5%
CFTR: 8.42% 14.95% 20.70% 99.6%
Table D.3: Top-k CatBoost model predictions at H3 resolution 7
Context Variables Top-1 Top-2 Top-3 Test Kept
CHFTR 8.69% 15.57% 21.58% 100%
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Table D.4: Top-k GRU model predictions at H3 resolution 7
Context Variables Top-1 Top-2 Top-3 Test Kept
CHFTR 8.97% 15.81% 21.75% 100%
Table D.5: top-k majority distribution at H3 resolution 8
Context Variables Top-1 Top-2 Top-3 Test Kept
CH 1.92% 3.13% 4.16% 98%
CHFTR 1.33% 2.25% 3% 65%
CHLP 1.92% 3.13% 4.16% 98%
CHFTRLP 1.33% 2.25% 3% 65%
CHDFTRLP 1.33% 2.24% 3% 65%
HFTRLP 1.16% 2.18% 3.12% 90%
CFTR: 2.06% 3.74% 5.16% 99%
Legend:

e C: Start H3 Cell

e H: Hour of Week

e D: Discount Applied
e B: Was Reserved e L: POI cluster

F: Traffic Flow

T: Temperature

R: Precipitation

e P: Dominant POI category
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